设a1a2a3是三个N维向量,又B1=a1+a2,b2=a2+a3,b3=a3+a1,证明a1a2a3的线性无关充分必要条件是b1b2b3线性无关

问题描述:

设a1a2a3是三个N维向量,又B1=a1+a2,b2=a2+a3,b3=a3+a1,证明a1a2a3的线性无关充分必要条件是b1b2b3线性无关

(b1,b2,b3)=(a1,a2,a3)K
K=
1 0 1
1 1 0
0 1 1
|K|=2,K可逆
所以 r(b1,b2,b3)=r(a1,a2,a3)
所以 a1a2a3的线性无关
r(a1,a2,a3) = 3
r(b1,b2,b3) = 3.
b1b2b3线性无关没必要. 因为两个向量组的秩相同.