x^3e^(-x)的不定积分是多少?如题 x^3e^(-x)的不定积分 要求过程~

问题描述:

x^3e^(-x)的不定积分是多少?
如题 x^3e^(-x)的不定积分 要求过程~

=-∫x^3d(e^(-x))
=-[x^3*e^(-x)-∫e^(-x)*3x^2dx]
=-x^3*e^(-x)-3∫x^2d(e^(-x))
=-x^3*e^(-x)-3[x^2*e^(-x)-∫e^(-x)*2xdx]
=-x^3*e^(-x)-3x^2*e^(-x)-6∫xd(e^(-x))
=-x^3*e^(-x)-3x^2*e^(-x)-6[x*e^(-x)-∫e^(-x)dx]
=-x^3*e^(-x)-3x^2*e^(-x)-6x*e^(-x)-6e^(-x)+C

∫x^3e^(-x)dx=∫x^3 d(-e^(-x))=x^3(-e^(-x))+3∫x^2e^(-x)dx∫x^2e^(-x)dx=∫x^2 d(-e^(-x))=x^2(-e^(-x))+2∫xe^(-x)dx∫xe^(-x)dx=∫xd(-e^(-x))=x(-e^(-x))+∫e^(-x)dx∫e^(-x)dx=-e^(-x)+C