lim{[(x^2)+1]/[x+1]}-(ax+b)=0,求,a,x→∞

问题描述:

lim{[(x^2)+1]/[x+1]}-(ax+b)=0,求,a,x→∞

lim{[(x^2)+1]/[x+1]}-(ax+b)=lim{[(x^2)+1-(ax+b)(x+1)]/(x+1)}=lim{[(1-a)(x^2)-(a+b)x+(1-b)]/(x+1)}上下除以x=lim{[(1-a)x-(a+b)+(1-b)/x]/[1+(1/x)]}因为x→∞,所以1/x→0,即分母的极限为1而要令lim{[(x^2)...