f(x)=ax²+bx+c,且f(0)=0,f(x+1)-f(x)=x+1,求函数值域
问题描述:
f(x)=ax²+bx+c,且f(0)=0,f(x+1)-f(x)=x+1,求函数值域
答
f(0)=0+0+c=0
c=0
f(x+1)=a(x+1)²+b(x+1)=ax²+(2a+b)x+(a+b)
f(x)=ax²+bx
相减
2ax+(a+b)=x+1
所以2a=1,a+b=1
则a=b=1/2
f(x)=x²/2+x/2
=1/2*(x+1/2)²-1/8
所以值域是[-1/8,+∞)