用配方法解下列方程x²﹢3x‐4=0,2x²‐7x‐4=O,8y²-2=4y

问题描述:

用配方法解下列方程x²﹢3x‐4=0,2x²‐7x‐4=O,8y²-2=4y

(x+3/2)^2=25*4
x+2*3=5*2
x=1
x^2-7/2+2=0
(x-7*4)^2-16*49-2=0
(x-7*4)^2=81*16
x-7*4=9*4
x=4
4y^2-2y-1=0
(2y-1*2)-1*4-1=0
(2y-1*2)^2=5*4
y=(根号5+1)*44x²-7X﹢2=0(2x-7*4)^2+2-49*16=0
(2x-7*4)^2=17*16
剩下就会了吧自已解吧