题1:I1=∫∫sin2(x+y)dxdy I2=∫∫(x+y)2dxdy 其中D是矩形区域 ,0
问题描述:
题1:I1=∫∫sin2(x+y)dxdy I2=∫∫(x+y)2dxdy 其中D是矩形区域 ,0
答
我来回答吧:
1),因为D是矩形区域 ,01>=sin2(x+y)
I1=∫∫sin2(x+y)dxdy,我不知道sin2(x+y)是不是[sin(x+y)]^2
如果是,可以令F(x+y)=(x+y)^2-[sin(x+y)]^2,那么可以证明在0F>0
所以积分L1
那么这样分区讨论就显得比较难了,你说明一下吧
2)二重极限lim(x2+y2)sin(1/y)=0(x、y都趋近于0)
证明如下:令(x2+y2)sin(1/y)=A,显然绝对号下A而lim(x2+y2)=0(x、y都趋近于0)
显然04)进行分离变量,有dlny/lny=dsinx/[six(1-sin^2x)]
dln(lny)=dlnsinx-[dln(1-six^2x)]/2
最后可以得y=C*e^(tgx)
3):∑ka(k不等于0)收敛=S,那么:∑a=S/K同样收敛
根据定义必然有lima(n)=0
所以lima^2=0(a带一个下脚标n,极限中n趋近于无穷大)
5)函数f(x,y)在(x0,y0)可微是f(x,y)在该点偏导数f'x(x,y)和f'y(x,y)存在的充分条件,但不必要.