已知实数x、y满足x2+xy+y2=1,则x2-xy+y2的最大值是_,最小值是_.
问题描述:
已知实数x、y满足x2+xy+y2=1,则x2-xy+y2的最大值是______,最小值是______.
答
设x2-xy+y2=A
x2-xy+y2=A与x2+xy+y2=1相加可以得到:
2(x2+y2)=1+A (1)
x2-xy+y2=A与x2+xy+y2=1相减得到:
2xy=1-A (2)
(1)+(2)×2得:
2(x2+2xy+y2)=2(x+y)2=3-A≥0
∴A≤3,
(1)-(2)×2得:
2(x-y)2=3A-1≥0,
∴A≥
.1 3
综上:
≤A≤3.1 3