f(x) = cos(2x-π/3) + sin^2x - cos^2x的对称轴方程
问题描述:
f(x) = cos(2x-π/3) + sin^2x - cos^2x的对称轴方程
答
f(x) = cos(2x-π/3) + sin^2x - cos^2x
=cos(2x)cos(π/3)+sin(2x)sin(π/3)-cos2x
=(√3/2)sin2x-(1/2)cos2x
=sin(2x-π/6)
所以对称轴2x-π/6=2kπ+π/2
x=kπ+5π/12k∈Z