两正数x,y,满足x+y=1则(x+1/x)(y+1/y)的最小值

问题描述:

两正数x,y,满足x+y=1则(x+1/x)(y+1/y)的最小值
a>b>0,则a^2+1/ab+1/a(a-b)的最小值是

(x+1/x)(y+1/y)=[(x^2+1)/x][(y^2+1)/y]=(x^2+y^2+x^2*y^2+1)/xy=x/y+y/x+xy+1/xy (xy+1/xy不能用均值定理)=x/y+y/x+xy+(x+y)^2/xy=2(x/y+y/x)+xy+2 (1=x+y≥2√xy),xy≤1/4,)≥6+xy=6.25此时x=y=1/2方法2(x+1/x)(...