函数f(x),当x=0的时候,f(x)=0,否则f(x)=x^2*sin(1/x),问此函数在x=0处,是否连续,是否可导,我认为是连续,不可导,但答案说是连续且可导,那位高人告诉我,是答案错了,还是有什么玄机在里面,谢谢了!
问题描述:
函数f(x),当x=0的时候,f(x)=0,否则f(x)=x^2*sin(1/x),问此函数在x=0处,是否连续,是否可导,我认为是连续,不可导,但答案说是连续且可导,那位高人告诉我,是答案错了,还是有什么玄机在里面,谢谢了!
答
我们可以根据导数的极限形式来判定.f'(x)=lim[(x^2*sin(1/x)-0)/x]=lim[x*sin(1/x)],显然x趋于0时x是一个无穷小量,sin(1/x)是一个有界量,无穷小乘以有界还是无穷小,也就是趋于0,也就是那个极限式为0,所以可以知道f(x...