关于函数导数问题,
关于函数导数问题,
设函数f(x)=x-ln(x+m),其中常数m为整数.
(Ⅰ)当m为何值时,f(x)≥0;
(Ⅰ)∵f(x)=x-ln(x+m),x∈(-m,+∞),
∴f′(x)=1-1 x+m =x-(1-m) x+m ,令f'(x)=0,得x=1-m.------------(2分)
当x∈(-m,1-m)时,f'(x)<0,f(x)为减函数,f(x)>f(1-m)
当x∈(1-m,+∞)时,f'(x)>0,f(x)为增函数,f(x)>f(1-m)---(4分)
根据函数极值判别方法,f(1-m)=1-m为极小值,
而且对x∈(-m,+∞)都有f(x)≥f(1-m)=1-m.
故当m≤1时,f(x)≥0.---------------(6分)
1.
当x∈(-m,1-m)时,f'(x)<0,f(x)为减函数,f(x)>f(1-m)
当x∈(1-m,+∞)时,f'(x)>0,f(x)为增函数,f(x)>f(1-m)
我知道判断这个区间递增还是递减就带入一个区间的数值进去 看是大于0还是小于0
但是这里的区间:x∈(-m,1-m)并不是一个实数 题目中要求m,所以不知道m的值取多大.那么面对这种区间的时候,怎样判断它是增函数还是减函数?
2.能不能说一下简便判断这个区间是增函数还是减函数的方法?
f′(x)=[x-(1-m)]/( x+m)
当x∈(-m,1-m)时,∵x0,∴f'(x)1-m,∴分子x-(1-m)>0,∵x>1-m,∴分母x+m>1>0,∴f'(x)>0,增函数f′(x)=[x-(1-m)]/( x+m)这是什么。就是你题目中解得第二行的∴f′(x)=1-1 x+m =x-(1-m) x+m ,你这儿是把分号写掉了,我帮你补上了,应该是f′(x)=1-1 /(x+m) =[x-(1-m) ]/(x+m)