设A=1/2^10+1/(2^10+1)+1/(2^10+2)+...+1/(2^11+1),则A与1的大小关系为?

问题描述:

设A=1/2^10+1/(2^10+1)+1/(2^10+2)+...+1/(2^11+1),则A与1的大小关系为?

A=1/2^10+1/(2^10+1)+...+1/(2^11+1)
=1/2^10+1/(2^10+1)+...+1/(2^10+2^10+1)
故A共有2^10+2项
第一项与最后一项:1/2^10+1/(2^11+1)
因:1/(2^10*(2^10+1))=1/2^10-1/(2^10+1)>1/(2^11*(2^11+1))=1/2^11-1/(2^11+1)
故:1/2^10+1/(2^11+1)>1/(2^10+1)+1/2^11,即第二项与倒数第二项的和
同理:1/(2^10+1)+1/2^11>1/(2^10+2)+1/(2^11-1),即第三项与倒数第三项的和
即:1/2^10+1/(2^11+1)>1/(2^10+1)+1/2^11>1/(2^10+2)+1/(2^11-1)>...
>1/(2^10+(2^9+1))+1/(2^10+(2^9+2)),即中间两项的和
故:A而:1/2^10+1/(2^11+1)这是因为:1/2^10+1/(2^11+1)-2/(2^10+2)
=1/2^10+1/(2^11+1)-1/(2^9+1)≈1/2^10+1/2^11-1/2^9
=(1/2^9)(1/2+1/4-1)=-(1/2^9)/4即:A即:A