第二型曲线积分

问题描述:

第二型曲线积分
∫(x^2+2xy)dy,其中C是逆时针方向进行的上半椭圆x^2/a^2+y^2/b^2=1,y>0

写出椭圆的参数方程x=acost,y=bsint,则dy=bcostdt,代人积分表达式中,积分=∫[a^2(cost)^2+2ab^2sint(cost)^2]dt(积分限0到π),计算这个定积分即可,结果等于(4/3)ab^2.