①在△ABC中,向量AB²=向量AB·向量AC+向量BA·向量BC+向量CA·向量CB,则△ABC的形状为②已知两个向量集合A={a│a=(cosα,4-cos²α),α属于R},B={b│b=(cosβ,λ+sinβ),β属于R},若A与B的交集≠ø,则实数λ的取值范围是③已知△ABC和点M满足向量MB-向量MB-向量MC=0,若存在实数m使得向量AB-向量AC=m向量AM,则m=A.5 B.4 C.3 D.2
问题描述:
①在△ABC中,向量AB²=向量AB·向量AC+向量BA·向量BC+向量CA·向量CB,则△ABC的形状为
②已知两个向量集合A={a│a=(cosα,4-cos²α),α属于R},B={b│b=(cosβ,λ+sinβ),β属于R},若A与B的交集≠ø,则实数λ的取值范围是
③已知△ABC和点M满足向量MB-向量MB-向量MC=0,若存在实数m使得向量AB-向量AC=m向量AM,则m=
A.5 B.4 C.3 D.2
答
①直角三角形
答
1)AB^2=AB.AC+BA.BC+CA.CB=AB.AC+AB.CB+CA.CB=AB(AC+CB)+CA.CB=AB^2+CA.CBCA.CB=0角度c为直角,三角形为直角三角形2)由题意得知两个等式:1.cosα=cosβ 2.4-cos^α=入+sinβ 由1式得知 α=β 带入2式得 4-cos^...