如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点. (1)判断△OGA和△NPO

问题描述:

如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点.

(1)判断△OGA和△NPO是否相似,并说明理由;
(2)求过点A的反比例函数解析式;
(3)若(2)中求出的反比例函数的图象与EF交于B点,请探索:直线AB与OM是否垂直,并说明理由.

(1)△OGA和△NPO相似.理由如下:
∵矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,
∴∠P=∠POM=∠OGF=90°,
∴∠PON+∠PNO=90°,∠GOA+∠PON=90°,
∴∠PNO=∠GOA,
∴△OGA∽△NPO;
(2)∵E点坐标为(4,0),G点坐标为(0,2),
∴OE=4,OG=2,
∴OP=OG=2,PN=GF=OE=4,
∵△OGA∽△NPO,
∴OG:NP=GA:OP,即2:4=GA:2,
∴GA=1,
∴A点坐标为(1,2),
设过点A的反比例函数解析式为y=

k
x

把A(1,2)代入y=
k
x
得k=1×2=2,
∴过点A的反比例函数解析式为y=
2
x

(3)直线AB与OM垂直.理由如下:
把x=4代入y=
2
x
中得y=
1
2

∴B点坐标为(4,
1
2
),
∴BF=2-
1
2
=
3
2

而A点坐标为(1,2),
∴AG=1,AF=4-1=3,
∴OG:AF=2:3,GA:FB=1:
3
2
=2:3,
∴OG:AF=GA:FB,
而∠OGA=∠F,
∴△OGA∽△AFB,
∴∠GAO=∠ABF,
∵∠ABF+∠BAF=90°,
∴∠GAO+∠BAF=90°,
∴∠OAB=90°,
∴直线AB与OM垂直.