已知y+z分之x=a,x+z分之y=b,x+y分之z=c,试求a+1分之a + b+1分之b + c+1分之c的值

问题描述:

已知y+z分之x=a,x+z分之y=b,x+y分之z=c,试求a+1分之a + b+1分之b + c+1分之c的值

(a/a+1)+(b/b+1)+(c/c+1)
=[1/1+(1/a)] +[1/1+(1/b)]+[1/1+(1/c)]
代入得
1/(x+y+z/x)+1/(x+y+z/y)+1/(x+y+z/z)
=(x+y+z)/(x+y+z)=1