若cos(2α)/sin(α-π/4)=-(根号2)/2则cos(α)+sin(α)的值

问题描述:

若cos(2α)/sin(α-π/4)=-(根号2)/2则cos(α)+sin(α)的值

因为cos(2α)/sin(α-π/4)=-(√2)/2
所以(cos²α-sin²α)/[sinαcos(π/4)-cosαsin(π/4)]=-(√2)/2
[(cosα+sinα)(cosα-sinα)]/[(√2/2)*(sinα-cosα]=-(√2)/2
则cosα+sinα=-(√2)/2*(√2)/2=-1/2