对坐标的曲面积分(未学高斯公式)∫∫∑ ydzdx+(x+z)dxdy,其中∑为圆柱面x^2+y^2=a^2(0RT,求详解
问题描述:
对坐标的曲面积分(未学高斯公式)∫∫∑ ydzdx+(x+z)dxdy,其中∑为圆柱面x^2+y^2=a^2(0RT,求详解
答
太高端了
答
原式=∫∫√(a²-x²)dzdx-∫∫[-√(a²-x²)]dzdx+∫∫(x+1)dxdy-∫∫(x+0)dxdy
(S1:-a≤x≤a:,0≤z≤1.S2:x²+y²≤a²)
=2∫∫√(a²-x²)dzdx+∫∫dxdy
=2∫√(a²-x²)dx∫dz+∫dθ∫rdr (第二个积分作极坐标变换)
=2∫√(a²-x²)dx+πa²
=2∫a²cos²tdt+πa² (作变换x=asint)
=a²∫[1+cos(2t)]dt+πa² (应用倍角公式)
=a²[t+sin(2t)/2]│+πa²
=a²(π/2+π/2)+πa²
=2πa².