设f(0)的二阶导数存在,且f(0)=0,g(x)=f(x)/x (x≠0时) g(x)=f(0)的导数(x=0时),则g(0)的导数为
问题描述:
设f(0)的二阶导数存在,且f(0)=0,g(x)=f(x)/x (x≠0时) g(x)=f(0)的导数(x=0时),则g(0)的导数为
如题设f(0)的二阶导数存在,且f(0)=0,g(x)=f(x)/x,(x≠0时) g(x)=f(0)的导数,(x=0时),则g(0)的导数为多少
答
由导数的定义有g'(0)=lim(x-->0)[g(x)-g(0)]/(x-0)=lim(x-->0)[g(x)-g(0)]/x=lim(x-->0)[g(x)-f'(0)]/x又因为当x不等于0时,有g(x)=f(x)/x,所以g'(0)=lim(x-->0)[f(x)/x-f'(0)]/x=lim(x-->0)[f(x)-x*f'(0)]/x^2因为该...