若同一个圆的内接正三角形、正方形、正六边形的边心距分别为r3,r4,r6,则r3:r4:r6等于( )A. 1:2:3B. 3:2:1C. 1:2:3D. 3:2:1
问题描述:
若同一个圆的内接正三角形、正方形、正六边形的边心距分别为r3,r4,r6,则r3:r4:r6等于( )
A. 1:
:
2
3
B.
:
3
:1
2
C. 1:2:3
D. 3:2:1
答
知识点:解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.
设圆的半径为R,
则正三角形的边心距为R×cos60°.
四边形的边心距为R×cos45°,
正六边形的边心距为R×cos30°.
∴r3:r4:r6等于1:
:
2
.
3
故选A.
答案解析:经过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C.连接OA,则在直角△OAC中,∠O=
.OC是边心距,OA即半径.根据三角函数即可求解.180° n
考试点:正多边形和圆.
知识点:解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.