设y=f(x)在(-∞,+∞)上连续且单调递减,试证:函数F(x)=∫ {0,x}(x-2t)f(t)dt 在(-∞,+∞)单调递F(x)=∫[0,x] (x-2t)f(t)dt=x∫[0,x] f(t)dt-2∫[0,x] tf(t)dtF'(x)=∫[0,x] f(t)dt+xf(x)-2xf(x)=∫[0,x] f(t)dt-xf(x)F''(x)=f(x)-f(x)-xf'(x)=-xf'(x) 由题意知f'(x)0时,F''(x)>0,x

问题描述:

设y=f(x)在(-∞,+∞)上连续且单调递减,试证:函数F(x)=∫ {0,x}(x-2t)f(t)dt 在(-∞,+∞)单调递
F(x)=∫[0,x] (x-2t)f(t)dt=x∫[0,x] f(t)dt-2∫[0,x] tf(t)dt
F'(x)=∫[0,x] f(t)dt+xf(x)-2xf(x)=∫[0,x] f(t)dt-xf(x)
F''(x)=f(x)-f(x)-xf'(x)=-xf'(x) 由题意知f'(x)0时,F''(x)>0,x

x>0时,F''(x)>0,x