在三角形ABC中,∠BAD=∠DAC,BE垂直于AC,交AD于F,试说明:∠AFE=1/2(∠ABC+∠C)最好能够格式规范!
问题描述:
在三角形ABC中,∠BAD=∠DAC,BE垂直于AC,交AD于F,试说明:∠AFE=1/2(∠ABC+∠C)
最好能够格式规范!
答
BE垂直AC
角AFE=90-角DAC
角DAC=角A*1/2
角A=180-(角ABC+角C)
所以
角AFE=90-(角A)/2
=90-[180-(角ABC+角C)]/2
=90-90+(角ABC+角C)/2
=(角ABC+角C)/2
答
∵BE⊥AC
∴∠FEA=90
∴∠AFE=180-90-∠DAC=90-∠DAC
∵∠DAC=∠BAD=1/2∠A
∠A=180-(∠ABC+C)
∴∠AFE=90-1/2∠A
=90-【180-(∠ABC+∠C)】1/2
=90-90+1/2∠ABC+1/2∠C
=1/2(∠ABC+∠C)