初一几何证明题:如图,BD=CD,BF⊥AC于点F,CE⊥AB于点E.求证:点D在∠BAC的角平分线上初一下册课时作业上的
问题描述:
初一几何证明题:如图,BD=CD,BF⊥AC于点F,CE⊥AB于点E.求证:点D在∠BAC的角平分线上
初一下册课时作业上的
答
证明:
∵BF⊥AC于点F,CE⊥AB于点E
∴∠BED=∠CFD=90°
∵∠BDE=∠CDF,BD=CD
∴△BDE≌△CDF
∴DE=DF
∴点D在∠BAC的角平分线上
答
证明:
∵BF⊥AC CE⊥AB
∴=∠CFD∠BED=90°
∵∠BDE=∠CDF,BD=CD
∴△BDE≌△CDF
∴DE=DF
∴点D在∠BAC的角平分线上
答
图在哪?如果BF交CE于点D,那么证明如下:
∵BF⊥AC于点F,CE⊥AB于点E
∴∠BED=∠CFD=90°
又∵∠BDE=∠CDF,BD=CD
∴△BDE≌△CDF(AAS)
∴DE=DF
∴点D在∠BAC的角平分线上 (角平分线上的点到角两边的距离相等)