古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a、b、c为勾股数.你认为正确吗?如果正确,请说明理由,并利用这个结论得出一些勾股数.

问题描述:

古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a、b、c为勾股数.你认为正确吗?如果正确,请说明理由,并利用这个结论得出一些勾股数.

正确.理由:
∵m表示大于1的整数,
∴a,b,c都是正整数,且c是最大边,
∵(2m)2+(m2-1)2=(m2+1)2
∴a2+b2=c2
即a、b、c为勾股数.
当m=2时,可得一组勾股数3,4,5.
答案解析:欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
考试点:勾股数.


知识点:解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.