复数(cos5x+i sin5x)^2/(cos3x-i sin3x)^3怎么化为指数表达式
问题描述:
复数(cos5x+i sin5x)^2/(cos3x-i sin3x)^3怎么化为指数表达式
答
e^(a+bi)x=e^ax*(cosbx+isinbx),e^(a-bi)x=e^ax*(cosbx-isinbx),所以原式等于e^(10ix)/e^(-9ix)=e^(19ix)
答
cos5x+isin5x=e^(i5x); cos3x-isin3x=cos(-3x)+isin(-3x)=e^[i(-3x)],
原式=e^(i10x)/e[i(-9x)]=e^(i19x),写成三角式是cos19x+isin19x.