已知tan(a+b)=2/5,tan(b-π/4)=1/4,则tan(a+π/4)等于b是数学中的贝特

问题描述:

已知tan(a+b)=2/5,tan(b-π/4)=1/4,则tan(a+π/4)等于
b是数学中的贝特

=[tan(a+b)-tan(b-π/4)]/[1-tan(a+b)tan(b-π/4)
=(2/5-1/4)/(1-2/5*1/4)
=(8-5)/(20-2)
=3/18
=1/6

a+π/4=a+b-(b-π/4)
tan(a+π/4)=(tan(a+b)-tan(b-π/4))/(1+tan(a+b)tan(b-π/4))
=(2/5-1/4)/(1+2/5*1/4)
=3/20*10/11
=3/22