已知a,b,c为三角形的三边,则关于代数式a2-2ab+b2-c2的值,下列判断正确的是( )A. 大于0B. 等于0C. 小于0D. 以上均有可能
问题描述:
已知a,b,c为三角形的三边,则关于代数式a2-2ab+b2-c2的值,下列判断正确的是( )A. 大于0
B. 等于0
C. 小于0
D. 以上均有可能
答
a2-2ab+b2-c2=(a-b)2-c2=(a+c-b)[a-(b+c)].
∵a,b,c是三角形的三边.
∴a+c-b>0,a-(b+c)<0.
∴a2-2ab+b2-c2<0.
故选C.
答案解析:根据三角形中任意两边之和大于第三边.把代数式a2-2ab+b2-c2分解因式就可以进行判断.
考试点:["因式分解的应用","三角形三边关系"]
知识点:本题考查了三角形中三边之间的关系.(a+c-b)[a-(b+c)]是一个正数与负数的积,所以小于0.