直线y=ax+1与椭圆3x^2+y^2=2相交于P、Q两点.,当a为何值时以PQ为直径的圆过坐标原点.
问题描述:
直线y=ax+1与椭圆3x^2+y^2=2相交于P、Q两点.,当a为何值时以PQ为直径的圆过坐标原点.
答
把y=ax+1代入椭圆3x^2+y^2=2得:(3+a^2)x^2+2ax-1=0△=4a^2+4(3+a^2)>0;设P(x1,y1),Q(x2,y2)则有x1+x2=-2a/(a^2+3),x1*x2=-1/(a^2+3),所以y1y2=(ax1+1)(ax2+1)=a^2x1x2+a(x1+x2)+1又0P⊥OQ,所以向量OP*向量OQ=x1x2+y1...