怎么证明sin2x=2tanx/(1+tan^2x)
问题描述:
怎么证明sin2x=2tanx/(1+tan^2x)
答
sin2x
=2sinx*cosx
=2sinx/cosx*cos^2 x
=2tanx/(1/cos^2x)
=2tanx/[(sin^2x+cos^2x)/cos^2x]
=2tanx/(1+tan^2x)
答
右边2tanx/(1+tan^2x)=(2sinx/cosx)cos^2x=2sinxcosx=sin2x=左边