已知a向量=(2cosx,2sinx),向量b=(3cosB,3sinB)

问题描述:

已知a向量=(2cosx,2sinx),向量b=(3cosB,3sinB)
已知a向量=(2cosA,2sinA),向量b=(3cosB,3sinB),两向量夹角为60,则直线xcosA-ysinA+1/2=0与圆(x-cosB)^2+(y+sinB)^2=1的位置关系

a向量•向量b==(2cosA,2sinA)•(3cosB,3sinB)
=6cosAcosB+6sinAsinB=6cos(A-B)
=|a向量|•|向量b|cos60°=3
cos(A-B)=1/2
圆心(cosB,-sinB)到直线的距离为
d=|cosAcosB+sinAsinB+1/2|/(cos²A+sinA²)
==|cosAcosB+sinAsinB+1/2|=1=r
直线xcosA-ysinA+1/2=0与圆(x-cosB)^2+(y+sinB)^2=1
的位置关系是相切.