如图,圆O内切与三角形ABC,D,E,F是切点,圆O的半径是√3,∠C=60度,AC=7,BC=8,求三角形ABC的周长求

问题描述:

如图,圆O内切与三角形ABC,D,E,F是切点,圆O的半径是√3,∠C=60度,AC=7,BC=8,求三角形ABC的周长求

在叙述中,D在AC上,E在BC上,F在AB上.连接CO,由切线长定理,OC平分∠ACB,∴∠OCE=30°,∵∠CEO=90°,∴CE=3,∴BF=BE=8-3=5,∵CD=CE,∴CD=3,∴AF=AD=7-3=4,∴C△ABC=CD+CE+AD+AF+BE+BF=3+3+4+4+5+5=24.