已知A={a,b,c},B={-1,0,1},映射f:A到B满足f(a)+f(b)=f(c),求映射f:A到B的个数.
问题描述:
已知A={a,b,c},B={-1,0,1},映射f:A到B满足f(a)+f(b)=f(c),求映射f:A到B的个数.
答案是7,其中一部分如下:(1):当A中三个元素都对应0时,
则f(a)+f(b)=0+0=0=f(x),有一个映射.
可是,不是有f(a)=0,f(b)=0,f(c)=0三个映射吗?
答
f(a)=0,f(b)=0,f(c)=0 并不是三个映射
映射是一种对应关系
f(a)=0,f(b)=0,f(c)=0只是一个映射
f(a)=0是指A里的a同过映射f对应到B里的0