用比较发证明,若a,b,c都是正实数,则a^3+b^3+c^3>=3abc
问题描述:
用比较发证明,若a,b,c都是正实数,则a^3+b^3+c^3>=3abc
答
分解因式
a^3+b^3+c^3-3abc
= (a+b+c)*(a^2+b^2+c^2-ab-bc-ac)
= (a+b+c)*[(a-b)^2+(a-c)^2+(b-c)^2]/2
a+b+c>=0
[(a-b)^2+(a-c)^2+(b-c)^2]>=0
故a^3+b^3+c^3-3abc>=0
即a^3+b^3+c^3>=3abc