在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是(  ) A.1 B.1或−1+32 C.1或1+32 D.−1+32或1+32

问题描述:

在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是(  )
A. 1
B. 1或

−1+
3
2

C. 1或
1+
3
2

D.
−1+
3
2
1+
3
2

①如图,延长AC,做PD⊥BC交点为D,PE⊥AC,交点为E,∵CP∥AB,∴∠PCD=∠CBA=45°,∴四边形CDPE是正方形,则CD=DP=PE=EC,∵在等腰直角△ABC中,AC=BC=1,AB=AP,∴AB=12+12=2,∴AP=2;∴在直角△AEP中,(1+EC...