(x+1)3+(x-2)8=a0+a1(x-1)+a2(x-1)2+…+a8(x-1)8,则a3=_.

问题描述:

(x+1)3+(x-2)8=a0+a1(x-1)+a2(x-1)2+…+a8(x-1)8,则a3=______.

∵(x+1)3+(x-2)8=[(x-1)+2]3+[(x-1)-1]8=a0+a1(x-1)+a2(x-1)2+…+a8(x-1)8
[(x-1)+2]3展开式中含(x-1)3的系数为:

C 33
20=1,
[(x-1)-1]8展开式中含(x-1)3的系数为:
C 38
(-1)5=-56
∴a3=-56+1=-55.