请阅读下列材料: 问题:如图(1),一圆柱的底面半径、高均为5cm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线: 路线1:侧面展开图中的
请阅读下列材料:
问题:如图(1),一圆柱的底面半径、高均为5cm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:
路线1:侧面展开图中的线段AC.如下图(2)所示:
设路线1的长度为l1,则l12=AC2=AB2+
2=52+(5π)2=25+25π2BC
路线2:高线AB+底面直径BC.如上图(1)所示:
设路线2的长度为l2,则l22=(AB+BC)2=(5+10)2=225
l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l12>l22,∴l1>l2
所以要选择路线2较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1cm,高AB为5cm”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l12=AC2=______;
路线2:l22=(AB+BC)2=______
∵l12______l22,
∴l1______l2(填>或<)
∴选择路线______(填1或2)较短.
(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到C点的路线最短.
(1)路线1:l12=AC2=25+π2;路线2:l22=(AB+BC)2=49.
∵l12<l22,
∴l1<l2(填>或<),
∴选择路线1(填1或2)较短.(5分)
(2)l12=AC2=AB2+
2=h2+(πr)2,BC
l22=(AB+BC)2=(h+2r)2,
l12-l22=h2+(πr)2-(h+2r)2=r(π2r-4r-4h)=r[(π2-4)r-4h];
r恒大于0,只需看后面的式子即可.(2分)
当r=
时,l12=l22;4h
π2−4
当r>
时,l12>l22;4h
π2−4
当r<
时,l12<l22.4h
π2−4