如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.
问题描述:
如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.
答
证明:∵点E为AB中点,∴AE=EB
又∵∠ACB=90°,
∴CE=AE=EB,
又∵AF=CE,
∴AF=AE,
∴∠3=∠F,
又EB=EC,ED⊥BC,
∴∠1=∠2(三线合一),
又∠2=∠3,
∴∠1=∠F,
∴CE∥AF,
∴四边形ACEF是平行四边形.