证明题求定积分
问题描述:
证明题求定积分
设函数F(X)在区间[a,b]上连续,单调增加,F(X)=1/(x-a)倍的{定积分f(t)dt,积分区间a到x,X属于(a,b]}试证明F(X)在区间(a,b]上恒有F(X)的导数大于等于0
答
将题中函数F(X)在区间[a,b]上连续,单调增加,改为f(x)在区间[a,b]上连续,单调增加.利用乘积的求导公式得dF/dx=(-1/(x-a)^2)∫f(t)dt+1/(x-a)f(x)(积分区间a到x)=f(x)/(x-a)-(1/(x-a)^2)∫f(t)dt因为f(x)在区间[a,b]单...