已知-2cosa+sina=0,a属于(π,3π/2),求sin(a+π/4),tan(π+π/4)

问题描述:

已知-2cosa+sina=0,a属于(π,3π/2),求sin(a+π/4),tan(π+π/4)

-2cosa+sina=0
sina=2cosa
sin²a=4cos²a
因为sin²a+cos²a=1
所以cos²a=1/5,sin²a=4/5
a在第三象限
所以cosa=-√5/5,sina=-2√5/5
所以sin(a+π/4)
=sinacosπ/4+cosasinπ/4
=-3√10/10
tana=sina/cosa=2
所以tan(a+π/4)
=(tana+tanπ/4)/(1-tanatanπ/4)
=(2+1)/(1-2)
=-3