观察下列各式:(X-1)(X+1)=x²-1;(X-1)(x²+X+1)=x³(x-1)(x³+x²+x+1)=x&sup4-1,有什么规律?
问题描述:
观察下列各式:(X-1)(X+1)=x²-1;(X-1)(x²+X+1)=x³(x-1)(x³+x²+x+1)=x&sup4-1,有什么规律?
根据上面的规律:
求2&sup7+2&sup6+2&sup5+2&sup4+2³+2²+2+1的值
答
2&sup7+2&sup6+2&sup5+2&sup4+2³+2²+2+1
=(2-1)(2&sup7+2&sup6+2&sup5+2&sup4+2³+2²+2+1)
=2^8-1
=256-1
=255