求计算I=∫∫|y-xˆ2|dxdy,其中D:|x|≤1 ,0≤y≤1 .

问题描述:

求计算I=∫∫|y-xˆ2|dxdy,其中D:|x|≤1 ,0≤y≤1 .

画出y=x²的图像,将区域|x|≤1 ,0≤y≤1分成两部分,下面的部分用D1表示,上面部分用D2表示
在D1内yx²
因此∫∫|y-x²|dxdy
=∫∫D1 (x²-y)dxdy+∫∫D2 (y-x²)dxdy
先积y
=∫[-1--->1]∫[0--->x²] (x²-y)dydx+∫[-1--->1]∫[x²--->1] (y-x²)dydx
=∫[-1--->1] (x²y-1/2y²) |[0--->x²]dx+∫[-1--->1] (1/2y²-x²y) |[x²--->1]dx
=∫[-1--->1] (x⁴-1/2x⁴)dx+∫[-1--->1] (1/2-x²-1/2x⁴+x⁴)dx
=1/2∫[-1--->1] x⁴dx+∫[-1--->1] (1/2-x²+1/2x⁴)dx
=∫[-1--->1] (1/2-x²+x⁴)dx
=2∫[0--->1] (1/2-x²+x⁴)dx
=x-2/3x³+2/5x⁵ [0--->1]
=1-2/3+2/5
=11/15