1 利用二重积分计算由3x+2y+z=1 y等于2倍的x的平方 x=1 z=0 围成的曲顶柱体的体积.

问题描述:

1 利用二重积分计算由3x+2y+z=1 y等于2倍的x的平方 x=1 z=0 围成的曲顶柱体的体积.

连立方程3X+2Y+Z=1,Z=0.得到直线方程3X+2Y=1.在平面直角坐标系中画出XOY面上的投影区域D.求出与曲线Y=2的X平方的交点确定X,Y的取值范围.求出积分区域D后.积分先对Z积分,从0到3X+2Y-1,再对X,Y 积.需要注意的是区域D要分层两部分才能计算.