空间6个点,任意3个不共平面,用两种颜色的线段连接,证明至少有一个三角形三边颜色相同~ 哪位会做阿,
问题描述:
空间6个点,任意3个不共平面,用两种颜色的线段连接,证明至少有一个三角形三边颜色相同~
哪位会做阿,
空间6个点,任意4个不共平面,用两种颜色的线段连接,证明至少有一个三角形三边颜色相同~
答
这个是经典的Ramsey数R(3,3)嘛~
不妨设红蓝二染色.
首先,任意四点不共面推出任意三点不共线.
随意取一点A,过A的连线有五条,其中必有三条同色,不妨设AB,AC,AD染红色.
考虑三角形BCD,如果它的各边都染蓝色,结论已成立.
否则,三角形BCD有红边,不妨设为BC,则ABC各边都为红色,结论成立!
综上,结论总成立~