求Y= |x-1 |+ |x-2 |+ |x-3 |+.+ |x-n |的最小值

问题描述:

求Y= |x-1 |+ |x-2 |+ |x-3 |+.+ |x-n |的最小值

引例:AB在数轴上表示a,b两数,分类讨论发现AB不论a,b正负,距离总为|a-b|.所以Y即为数轴上表示x的点P与表示1、2、3……n的点的距离的和!经过枚举讨论发现x的取值越靠中间,距离和Y 会越小 所以当实数x为1至n线段中点时,Y最小!1)当n为偶数时,x取n/2时,Y最小,为n/2 2)当n为奇数时,x取n+1/2,此时,Y最小,为n+n/2 综上,Y最小值为n/2或n+n/2.PS,我正在做这道题,不知道对不对,不对的话请告诉我答案~