△ABC中,A=π/3,B=π/4,BC=2根号3,求边AC (用正弦定理)
问题描述:
△ABC中,A=π/3,B=π/4,BC=2根号3,求边AC (用正弦定理)
答
利用正弦定理
BC/sinA=AC/sinB
∴ 2√3/sin(π/3)=AC/sin(π/4)
∴ AC= [2√3/sin(π/3)]*sin(π/4)
=[2√3/(√3/2)]/(√2/2)
=4√2AC= [2√3/sin(π/3)]*sin(π/4)=[2√3/(√3/2)]/(√2/2)为什么乘的变除了?抱歉,我输入错了AC= [2√3/sin(π/3)]*sin(π/4)=[2√3/(√3/2)]*(√2/2)=4*(√2/2)=2√2