∫cos2xdx 和∫cos^2xdx怎么解啊!

问题描述:

∫cos2xdx 和∫cos^2xdx怎么解啊!

∫cos2xdx = ∫(1/2)cos2xd(2x )=1/2 ∫cos2xd2x =1/2(sin 2x + C)
∫cos^2xdx=∫(cos4x +1) /2 dx
=∫(cos4x +1) /8 d(4x)
=1/8 ∫(cos4x +1) d(4x)
=1/8 [∫cos4x d(4x)+∫1d(4x)]
=1/8 [(sin 4x +C1)+ 4x+C2]
=1/8(sin 4x+ 4x+C)