如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.

问题描述:

如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4).

(1)求抛物线的解析式;
(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.

(1)设y=a(x-3)2,把B(0,4)代入,得a=49,∴y=49(x-3)2;(2)解法一:∵四边形OAMB的四边长是四个连续的正整数,其中有3、4,∴可能的情况有三种:1、2、3、4;2、3、4、5;3、4、5、6,∵M点位于对称轴右...
答案解析:(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将B点坐标代入求解即可;
(2)由于M在抛物线的图象上,根据(1)所得抛物线的解析式即可得到关于m、n的关系式:n=

4
9
(m-3)2,由于m、n同为正整数,因此m-3应该是3的倍数,即m应该取3的倍数,可据此求出m、n的值,再根据“以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数”将不合题意的解舍去,即可得到M点的坐标;
(3)设出P点的坐标,然后分别表示出PA2、PB2、PM2的长,进而可求出关于PA2+PB2+PM2与P点纵坐标的函数关系式,根据所得函数的性质即可求出PA2+PB2+PM2的最大(小)值,进而可判断出所求的结论是否恒成立.
考试点:二次函数综合题.

知识点:此题主要考查了二次函数解析式的确定以及二次函数最值的应用,同时还考查了分类讨论的数学思想,难度较大.