若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.

问题描述:

若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.

∵AC2+BC2=25+144=169,AB2=169,∴AC2+BC2=AB2,∴∠C=90°,连接OE、OQ,∵圆O是三角形ABC的内切圆,∴AE=AF,BQ=BF,∠OEC=∠OQC=∠C=90°,OE=OQ,∴四边形OECQ是正方形,∴设OE=CE=CQ=OQ=a,∵AF+BF=13,∴12-a...
答案解析:根据勾股定理的逆定理推出∠C=90°,连接OE、OQ,根据圆O是三角形ABC的内切圆,得到AE=AF,BQ=BF,∠OEC=∠OQC=90°,OE=OQ,推出正方形OECQ,设OE=CE=CQ=OQ=a,得到方程12-a+5-a=13,求出方程的解即可.
考试点:三角形的内切圆与内心;勾股定理的逆定理;正方形的判定与性质;切线的性质;切线长定理.
知识点:本题主要考查对三角形的内切圆与内心,切线长定理,切线的性质,正方形的性质和判定,勾股定理的逆定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.题型较好,综合性强.