如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN. 求证:(1)M为BD的中点; (2)AN/CN=AM/CM.

问题描述:

如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.
求证:(1)M为BD的中点;
(2)

AN
CN
AM
CM

证明:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA.又∵∠DAN=∠BAM,∠BCM=∠DCN,∴∠BAM=∠MBC,∠ABM=∠BCM.∴△BAM∽△CBM,∴BMCM=AMBM,即BM2=AM•CM.①又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM...