确定函数是否关于原点对称,只需要确定X=0时,F(X)等于0就可以么?若关于原点对称那么再将-X带入F(X)中,求出奇偶性么?,定义域到底有什么作用啊?资深的人回答下好么?F(X)=cosx有没有关于原点对称啊?
问题描述:
确定函数是否关于原点对称,只需要确定X=0时,F(X)等于0就可以么?若关于原点对称那么再将-X带入F(X)中,求出奇偶性么?,定义域到底有什么作用啊?资深的人回答下好么?F(X)=cosx有没有关于原点对称啊?
答
偶函数的定义是f(x)=f(-x),也就是把-x代入函数式,函数式不变的函数.在坐标系中,其图象关于Y轴对称.奇函数的定义是f(x)=-f(x),也就是把-x代入函数式,函数式所有项变符号的函数.在坐标系中,其图象关于原点对称.因此...